The elementary properties of inverse trigonometric functions will help to solve problems. Here are a few important properties related to inverse trigonometric functions:
Property Set 1:
- Sinβ1(x) = cosecβ1(1/x), xβ [β1,1]β{0}
- Cosβ1(x) = secβ1(1/x), x β [β1,1]β{0}
- Tanβ1(x) = cotβ1(1/x), if x > 0 (or) cotβ1(1/x) βΟ, if x < 0
- Cotβ1(x) = tanβ1(1/x), if x > 0 (or) tanβ1(1/x) + Ο, if x < 0
Property Set 2:
- Sinβ1(βx) = βSinβ1(x)
- Tanβ1(βx) = βTanβ1(x)
- Cosβ1(βx) = Ο β Cosβ1(x)
- Cosecβ1(βx) = β Cosecβ1(x)
- Secβ1(βx) = Ο β Secβ1(x)
- Cotβ1(βx) = Ο β Cotβ1(x)
Property Set 3:
- Sinβ1(1/x) = cosecβ1x, xβ₯1 or xβ€β1
- Cosβ1(1/x) = secβ1x, xβ₯1 or xβ€β1
- Tanβ1(1/x) = βΟ + cotβ1(x)
Property Set 4:
- Sinβ1(cos ΞΈ) = Ο/2 β ΞΈ, if ΞΈβ[0,Ο]
- Cosβ1(sin ΞΈ) = Ο/2 β ΞΈ, if ΞΈβ[βΟ/2, Ο/2]
- Tanβ1(cot ΞΈ) = Ο/2 β ΞΈ, ΞΈβ[0,Ο]
- Cotβ1(tan ΞΈ) = Ο/2 β ΞΈ, ΞΈβ[βΟ/2, Ο/2]
- Secβ1(cosec ΞΈ) = Ο/2 β ΞΈ, ΞΈβ[βΟ/2, 0]βͺ[0, Ο/2]
- Cosecβ1(sec ΞΈ) = Ο/2 β ΞΈ, ΞΈβ[0,Ο]β{Ο/2}
- Sinβ1(x) = cosβ1[β(1βx2)], 0β€xβ€1 = βcosβ1[β(1βx2)], β1β€x<0
Property Set 5:
- Sinβ1x + Cosβ1x = Ο/2
- Tanβ1x + Cotβ1(x) = Ο/2
- Secβ1x + Cosecβ1x = Ο/2
Property Set 6:
Tanβ1x + Tanβ1y = Ο + tanβ1 (x+y/ 1-xy), if xy > 1
Tanβ1x + Tanβ1y = tanβ1 (x+y/ 1-xy), if xy < 1
Tanβ1x + Tanβ1y = tanβ1 (x+y/ 1-xy), if xy < 1
Tanβ1x + Tanβ1y = -Ο + tanβ1 (x+y/ 1-xy), if xy > 1
Property Set 7:
- sinβ1(x) + sinβ1(y) = sinβ1[xβ(1βy2)+ yβ(1βx2)]
- cosβ1x + cosβ1y = cosβ1[xyββ(1βx2)β(1βy2)]
Property Set 8:
- sinβ1(sin x) = βΟβΟ, if xβ[β3Ο/2, βΟ/2]
= x, if xβ[βΟ/2, Ο/2]
= Οβx, if xβ[Ο/2, 3Ο/2]
=β2Ο+x, if xβ[3Ο/2, 5Ο/2] And so on.
- cosβ1(cos x) = 2Ο+x, if xβ[β2Ο,βΟ]
= βx, β[βΟ,0]
= x, β[0,Ο]
= 2Οβx, β[Ο,2Ο]
=β2Ο+x, β[2Ο,3Ο]
- tanβ1(tan x) = Ο+x, xβ(β3Ο/2, βΟ/2)
= x, (βΟ/2, Ο/2)
= xβΟ, (Ο/2, 3Ο/2)
= xβ2Ο, (3Ο/2, 5Ο/2)
Property Set 9:
