The two vectors \(\hat{i} + \hat{j} + \hat{k}\) and \(\hat{i} + 3\hat{j} + 5\hat{k}\) represent the two sides \(\overrightarrow{AB}\) and \(\overrightarrow{AC}\) respectively of a \(\triangle ABC\). We need to find the length of the median through A.
Let D be the midpoint of BC. The median through A is AD. We can find \(\overrightarrow{AD}\) using the formula for the midpoint:
\(\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})\)
\(\overrightarrow{AD} = \frac{1}{2} ((\hat{i} + \hat{j} + \hat{k}) + (\hat{i} + 3\hat{j} + 5\hat{k}))\)
\(\overrightarrow{AD} = \frac{1}{2} (2\hat{i} + 4\hat{j} + 6\hat{k}) = \hat{i} + 2\hat{j} + 3\hat{k}\)
The length of the median is the magnitude of \(\overrightarrow{AD}\):
\(|\overrightarrow{AD}| = \sqrt{(1)^2 + (2)^2 + (3)^2} = \sqrt{1 + 4 + 9} = \sqrt{14}\)
Therefore, the length of the median through A is \(\sqrt{14}\).
Thus, the correct option is (D) \(\sqrt{14}\).
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |