A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly:
A slope of a line is the conversion in y coordinate w.r.t. the conversion in x coordinate.
The net change in the y-coordinate is demonstrated by Δy and the net change in the x-coordinate is demonstrated by Δx.
Hence, the change in y-coordinate w.r.t. the change in x-coordinate is given by,
\(m = \frac{\text{change in y}}{\text{change in x}} = \frac{Δy}{Δx}\)
Where, “m” is the slope of a line.
The slope of the line can also be shown by
\(tan θ = \frac{Δy}{Δx}\)
Read More: Slope Formula
The equation for the slope of a line and the points are known to be a point-slope form of the equation of a straight line is given by:
\(y-y_1=m(x-x_1)\)
As long as the slope-intercept form the equation of the line is given by:
\(y = mx + b\)
Where, b is the y-intercept.