The correct option is (C):
The logic gate equivalent to the combination of logic gates shown in the figure is
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.
The logic gate equivalent to the circuit given in the figure is
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
It is the gate, where a circuit performs an AND operation. It has n number of input where (n >= 2) and one output.
It is the gate, where a circuit performs an OR operation. It has n number of input where (n >= 2) and one output.
An inverter is also called NOT Gate. It has one input and one output where the input is A and the output is Y.
A NAND operation is also called a NOT-AND operation. It has n number of input where (n >= 2) and one output.
A NOR operation is also called a NOT-OR operation. It has n number of input where (n >= 2) and one output.
XOR or Ex-OR gate is a specific type of gate that can be used in the half adder, full adder, and subtractor.
XNOR gate is a specific type of gate, which can be used in the half adder, full adder, and subtractor. The exclusive-NOR gate is flattened as an EX-NOR gate or sometimes as an X-NOR gate. It has n number of input (n >= 2) and one output.