Step 1: Total numbers between 100-1000 are 3-digit numbers. Total possible $= 5 \times 4 \times 3 = 60$.
Step 2: Divisible by 5: Last digit must be 5. Remaining 2 places filled by $\{1, 2, 3, 4\}$ in $4 \times 3 = 12$ ways.
Step 3: Divisible by 3: Sum of digits must be a multiple of 3. Sets: $\{1,2,3\}, \{1,3,5\}, \{2,3,4\}, \{3,4,5\}, \{1,2,x \text{ no}\}, \{1,5,x .......\}$. Valid sets: $\{1,2,3\}, \{1,3,5\}, \{2,3,4\}, \{3,4,5\}, \{1,5,x \text{ no}\}, \{2,4,x \text{ no}\}$.
Actually, sets are: (1,2,3), (1,3,5), (2,3,4), (3,4,5), (1,5,? no), (4,5,? no). Sets summing to mult of 3: $\{1,2,3\}, \{1,3,5\}, \{2,3,4\}, \{3,4,5\}, \{1,5,3\}$ (repeated). Unique sets: $\{1,2,3\}, \{1,3,5\}, \{1,5,? \text{ no}\}, \{2,3,4\}, \{3,4,5\}$.
Step 4: Applying $n(A \cup B) = n(A) + n(B) - n(A \cap B)$, carefully counting perms gives 32.