Step 1: Understanding the Internal Energy Formula
The internal energy of an ideal gas is given by:
\[
U = \frac{f}{2} nRT
\]
where:
- \( f \) is the degrees of freedom,
- \( n \) is the number of moles,
- \( R \) is the universal gas constant,
- \( T \) is the absolute temperature.
Step 2: Internal Energy for Monoatomic Gas
For a monoatomic gas (\( f = 3 \)):
\[
U_1 = \frac{3}{2} (2R T_1)
\]
Given that at \( T_1 = 27^\circ C = 300K \), the internal energy is:
\[
U_1 = U
\]
Step 3: Internal Energy for Diatomic Gas
For a diatomic gas (\( f = 5 \)):
\[
U_2 = \frac{5}{2} (3 R T_2)
\]
Given that \( T_2 = 127^\circ C = 400K \), we calculate:
\[
U_2 = \frac{5}{2} (3 R \times 400)
\]
\[
= \frac{5}{2} \times 3 \times \frac{U}{\frac{3}{2} \times 2 \times 300}
\]
\[
= \frac{5}{2} \times 3 \times \frac{U}{3 \times 300}
\]
\[
= \frac{5}{2} \times \frac{U}{2} \times \frac{400}{300}
\]
\[
= \frac{5}{2} \times \frac{U}{2} \times \frac{4}{3}
\]
Step 4: Conclusion
\[
U_2 = \frac{10U}{3}
\]
Thus, the correct answer is option (B) \( \frac{10U}{3} \).