Step 1: Moment of Inertia of a Uniform Solid Disc
The moment of inertia \( I \) of a uniform solid disc about its central axis is given by:
\[
I = \frac{1}{2} M R^2
\]
where
\( M = 10 \) kg (mass of the disc),
\( R = \frac{d}{2} = \frac{0.5}{2} = 0.25 \) m (radius of the disc).
Substituting the values,
\[
I = \frac{1}{2} \times 10 \times (0.25)^2
\]
\[
I = \frac{1}{2} \times 10 \times 0.0625
\]
\[
I = \frac{10 \times 0.0625}{2} = 0.3125 { kg m}^2
\]
Step 2: Angular Acceleration Calculation
The angular acceleration \( \alpha \) is given by:
\[
\alpha = \frac{\omega_f - \omega_i}{t}
\]
Given:
Initial angular velocity, \( \omega_i = 0 \),
Final angular velocity, \( \omega_f = 120 \) rpm \( = 120 \times \frac{2\pi}{60} = 4\pi \) rad/s,
Time, \( t = 5 \) s.
Thus,
\[
\alpha = \frac{4\pi - 0}{5}
\]
\[
\alpha = \frac{4\pi}{5} { rad/s}^2
\]
Step 3: Torque Calculation
Torque \( \tau \) is given by:
\[
\tau = I \alpha
\]
Substituting the values,
\[
\tau = (0.3125) \times \left(\frac{4\pi}{5}\right)
\]
\[
\tau = \frac{0.3125 \times 4\pi}{5}
\]
\[
\tau = \frac{1.25\pi}{5} = \frac{\pi}{4} { Nm}
\]
Thus, the required torque is \( \frac{\pi}{4} \) Nm.