The current \( I \) is related to the drift velocity \( v_d \), the number density of electrons \( n \), the charge of an electron \( e \), and the cross-sectional area \( A \) of the wire by the formula:
\[
I = n \times A \times e \times v_d
\]
Where:
\[
I = 3.4 \, \text{A}, \quad n = 8.5 \times 10^{28} \, \text{m}^{-3}, \quad v_d = 0.2 \, \text{mm/s} = 0.2 \times 10^{-3} \, \text{m/s}, \quad e = 1.6 \times 10^{-19} \, \text{C}
\]
Rearranging the formula to solve for the area \( A \):
\[
A = \frac{I}{n \times e \times v_d}
\]
Substituting the given values:
\[
A = \frac{3.4}{(8.5 \times 10^{28}) \times (1.6 \times 10^{-19}) \times (0.2 \times 10^{-3})}
\]
Solving for \( A \):
\[
A = \frac{3.4}{2.72 \times 10^{7}} = 1.25 \times 10^{-7} \, \text{m}^2
\]
Thus, the area of cross-section of the wire is:
\[
A = 1.25 \times 10^{-7} \, \text{m}^2
\]