The theoretical aerobic oxidation of biomass (C5H7O2N) is
\[ \mathrm{C_5H_7O_2N + 5\,O_2 \rightarrow 5\,CO_2 + NH_3 + 2\,H_2O} \]
Given a first-order biochemical oxidation with $k=0.23\, \text{d}^{-1}$ at $20^{\circ}$C (base $e$) and neglecting the second-stage oxygen demand, find the ratio BOD5 at $20^{\circ}$C to TOC (round to two decimals).
Atomic weights: C=12, H=1, O=16, N=14 g/mol
Step 1: Ultimate first-stage oxygen demand per mole of biomass.
From the stoichiometry, $1$ mol C$_5$H$_7$O$_2$N requires $5$ mol O$_2$.
Mass of O$_2$ demanded (ultimate, first-stage): $L_0 = 5 \times 32 = 160$ g O$_2$ per mol biomass.
Step 2: BOD over 5 days for first-order kinetics.
BOD$_t = L_0\left(1-e^{-kt}\right)$ with $k=0.23\ \text{d}^{-1}$ and $t=5$ d.
$kt=1.15 \Rightarrow e^{-1.15}\approx 0.316 \Rightarrow 1-e^{-1.15}\approx 0.684$.
Thus, $\text{BOD}_5 = 160 \times 0.684 \approx 109.44$ g O$_2$ per mol biomass.
Step 3: Total organic carbon (TOC) per mole of biomass.
Moles of C in C$_5$H$_7$O$_2$N $=5$ $\Rightarrow$ mass of organic carbon $=5\times 12=60$ g C per mol.
Step 4: Ratio.
\[
\frac{\text{BOD}_5}{\text{TOC}}=\frac{109.44}{60}\approx 1.824 \ \Rightarrow\ \boxed{1.82}\ (\text{to two decimals}).
\]
The theoretical aerobic oxidation of biomass (C5H7O2N) is
\[ \mathrm{C_5H_7O_2N + 5\,O_2 \rightarrow 5\,CO_2 + NH_3 + 2\,H_2O} \]
Given a first-order biochemical oxidation with $k=0.23\ \text{d}^{-1}$ at $20^{\circ}$C (base $e$) and neglecting the second-stage oxygen demand, find the ratio BOD5 at $20^{\circ}$C to TOC (round to two decimals).
Atomic weights: C=12, H=1, O=16, N=14 g/mol
Consider a five-digit number PQRST that has distinct digits P, Q, R, S, and T, and satisfies the following conditions:
1. \( P<Q \)
2. \( S>P>T \)
3. \( R<T \)
If integers 1 through 5 are used to construct such a number, the value of P is:



