To solve this problem, we need to find the temperature \( T(45) \) given the differential equation \( \frac{dT}{dt} = -K(T - 80) \), with initial condition \( T(0) = 160^\circ F \) and an additional piece of information \( T(15) = 120^\circ F \).
\(\frac{dT}{T - 80} = -K \, dt\)
\(\int \frac{dT}{T - 80} = \int -K \, dt\)
\(\ln|T - 80| = -Kt + C\)
\(|T - 80| = e^{-Kt + C} = Ce^{-Kt}\)
\(T - 80 = C'e^{-Kt}\) (considering \( C' = \pm C \))
\(T(t) = 80 + C'e^{-Kt}\)
\(160 = 80 + C'e^0 \Rightarrow C' = 80\)
\(T(t) = 80 + 80e^{-Kt}\)
\(120 = 80 + 80e^{-15K} \Rightarrow 40 = 80e^{-15K} \Rightarrow e^{-15K} = \frac{1}{2}\)
\(-15K = \ln\left(\frac{1}{2}\right) \Rightarrow K = \frac{\ln 2}{15}\)
\(T(45) = 80 + 80e^{-45\cdot\frac{\ln 2}{15}} = 80 + 80e^{-3 \ln 2} = 80 + 80e^{-\ln 8}\)
Simplifies to:
\(T(45) = 80 + 80\cdot\frac{1}{8} = 80 + 10 = 90\)
The correct answer is \(90^\circ F\).
Given:
\[ \frac{dT}{dt} = -K(T - 80) \]
Separate variables and integrate:
\[ \int_{160}^{T} \frac{1}{T - 80} dT = - \int_{0}^{t} K \, dt \]
This gives:
\[ \left[ \ln |T - 80| \right]_{160}^{T} = -Kt \] \[ \ln |T - 80| - \ln 80 = -Kt \] \[ \ln \frac{T - 80}{80} = -Kt \]
Exponentiate both sides:
\[ \frac{T - 80}{80} = e^{-Kt} \] \[ T = 80 + 80e^{-Kt} \]
Use the initial condition \( T(15) = 120 \) to find \( K \)
\[ 120 = 80 + 80e^{-K \cdot 15} \] \[ 40 = 80e^{-15K} \] \[ \frac{1}{2} = e^{-15K} \]
Take the natural logarithm:
\[ -15K = \ln \frac{1}{2} = -\ln 2 \] \[ K = \frac{\ln 2}{15} \]
Find \( T(45) \). Substitute \( t = 45 \):
\[ T(45) = 80 + 80e^{-K \cdot 45} \] \[ = 80 + 80 \left( e^{-15K} \right)^3 \] \[ = 80 + 80 \left( \frac{1}{2} \right)^3 \] \[ = 80 + 80 \cdot \frac{1}{8} \] \[ = 80 + 10 = 90 \]
Thus, the answer is:
90°F
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 