Question:

The temperature \( T(t) \) of a body at time \( t = 0 \) is \( 160^\circ \)F and it decreases continuously as per the differential equation \[ \frac{dT}{dt} = -K(T - 80), \] **where \( K \) is a positive constant. If \( T(15) = 120^\circ \)F, then \( T(45) \) is equal to

Updated On: Nov 19, 2024
  • \(85\degree F\)
  • \(95\degree F\)
  • \(90\degree F\)
  • \(80\degree F\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given:

\[ \frac{dT}{dt} = -K(T - 80) \]

Separate variables and integrate:

\[ \int_{160}^{T} \frac{1}{T - 80} dT = - \int_{0}^{t} K \, dt \]

This gives:

\[ \left[ \ln |T - 80| \right]_{160}^{T} = -Kt \] \[ \ln |T - 80| - \ln 80 = -Kt \] \[ \ln \frac{T - 80}{80} = -Kt \]

Exponentiate both sides:

\[ \frac{T - 80}{80} = e^{-Kt} \] \[ T = 80 + 80e^{-Kt} \]

Use the initial condition \( T(15) = 120 \) to find \( K \)

\[ 120 = 80 + 80e^{-K \cdot 15} \] \[ 40 = 80e^{-15K} \] \[ \frac{1}{2} = e^{-15K} \]

Take the natural logarithm:

\[ -15K = \ln \frac{1}{2} = -\ln 2 \] \[ K = \frac{\ln 2}{15} \]

Find \( T(45) \). Substitute \( t = 45 \):

\[ T(45) = 80 + 80e^{-K \cdot 45} \] \[ = 80 + 80 \left( e^{-15K} \right)^3 \] \[ = 80 + 80 \left( \frac{1}{2} \right)^3 \] \[ = 80 + 80 \cdot \frac{1}{8} \] \[ = 80 + 10 = 90 \]

Thus, the answer is:

90°F

Was this answer helpful?
0
0