Given:
\[ \frac{dT}{dt} = -K(T - 80) \]
Separate variables and integrate:
\[ \int_{160}^{T} \frac{1}{T - 80} dT = - \int_{0}^{t} K \, dt \]
This gives:
\[ \left[ \ln |T - 80| \right]_{160}^{T} = -Kt \] \[ \ln |T - 80| - \ln 80 = -Kt \] \[ \ln \frac{T - 80}{80} = -Kt \]
Exponentiate both sides:
\[ \frac{T - 80}{80} = e^{-Kt} \] \[ T = 80 + 80e^{-Kt} \]
Use the initial condition \( T(15) = 120 \) to find \( K \)
\[ 120 = 80 + 80e^{-K \cdot 15} \] \[ 40 = 80e^{-15K} \] \[ \frac{1}{2} = e^{-15K} \]
Take the natural logarithm:
\[ -15K = \ln \frac{1}{2} = -\ln 2 \] \[ K = \frac{\ln 2}{15} \]
Find \( T(45) \). Substitute \( t = 45 \):
\[ T(45) = 80 + 80e^{-K \cdot 45} \] \[ = 80 + 80 \left( e^{-15K} \right)^3 \] \[ = 80 + 80 \left( \frac{1}{2} \right)^3 \] \[ = 80 + 80 \cdot \frac{1}{8} \] \[ = 80 + 10 = 90 \]
Thus, the answer is:
90°F
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: