Step 1: Understanding the Concept:
A system of linear equations \( Ax=b \) has a unique solution if and only if the determinant of the coefficient matrix A is non-zero. The values on the right-hand side of the equations (in this case, \( \mu \)) do not affect the uniqueness of the solution, only its existence.
Step 2: Key Formula or Approach:
We write the system in matrix form \( Ax=b \) and find the determinant of the coefficient matrix A.
\[ A = \begin{pmatrix} 1 & 1 & 1
1 & 2 & 5
2 & 3 & \lambda \end{pmatrix}, \quad x = \begin{pmatrix} x
y
z \end{pmatrix}, \quad b = \begin{pmatrix} 6
10
\mu \end{pmatrix} \]
For a unique solution, we must have \( \det(A) \neq 0 \).
Step 3: Detailed Explanation:
Let's calculate the determinant of A.
\[ \det(A) = 1 \begin{vmatrix} 2 & 5
3 & \lambda \end{vmatrix} - 1 \begin{vmatrix} 1 & 5
2 & \lambda \end{vmatrix} + 1 \begin{vmatrix} 1 & 2
2 & 3 \end{vmatrix} \]
\[ = 1(2\lambda - 15) - 1(\lambda - 10) + 1(3 - 4) \]
\[ = 2\lambda - 15 - \lambda + 10 - 1 \]
\[ = \lambda - 6 \]
For the system to have a unique solution, we need \( \det(A) \neq 0 \).
\[ \lambda - 6 \neq 0 \implies \lambda \neq 6 \]
If \( \lambda \neq 6 \), the system has a unique solution regardless of the value of \( \mu \). The value of \( \mu \) can be any real number.
Step 4: Final Answer:
The system has a unique solution if \( \lambda \neq 6 \) and \( \mu \in \mathbb{R} \).