Step 1: Understanding the Concept:
By the Cayley–Hamilton theorem, every square matrix satisfies its own characteristic equation.
Thus, to find the matrix equation satisfied by \(A\), we must determine its characteristic polynomial.
Step 2: Key Formula or Approach:
The characteristic polynomial of a 3×3 matrix \(A\) is:
\[
\lambda^3 - (\text{tr}(A))\lambda^2 + (\text{sum of principal minors of order 2})\lambda - \det(A) = 0
\]
where:
- \(\text{tr}(A)\) = trace of \(A\) = sum of diagonal elements,
- principal minors of order 2 are cofactors of the diagonal elements,
- \(\det(A)\) is the determinant of \(A\).
Step 3: Detailed Explanation:
Let
\[
A = \begin{pmatrix}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{pmatrix}
\]
1. Trace of A:
\[
\text{tr}(A) = 2 + 1 + 3 = 6
\]
2. Sum of cofactors of diagonal elements:
- \(M_{11} = \det\begin{pmatrix} 1 & 0 \\ 1 & 3 \end{pmatrix} = 3\)
- \(M_{22} = \det\begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix} = 6\)
- \(M_{33} = \det\begin{pmatrix} 2 & 0 \\ 5 & 1 \end{pmatrix} = 2\)
Sum = \(3 + 6 + 2 = 11\)
3. Determinant of A:
\[
\det(A) =
2 \begin{vmatrix} 1 & 0 \\ 1 & 3 \end{vmatrix}
- 0 \begin{vmatrix} 5 & 0 \\ 0 & 3 \end{vmatrix}
+ (-1) \begin{vmatrix} 5 & 1 \\ 0 & 1 \end{vmatrix}
\]
\[
= 2(3) - 0 + (-1)(5) = 6 - 5 = 1
\]
4. Characteristic Equation:
\[
\lambda^3 - 6\lambda^2 + 11\lambda - 1 = 0
\]
5. Apply Cayley–Hamilton Theorem:
Replacing \(\lambda\) with \(A\):
\[
A^3 - 6A^2 + 11A - I = 0
\]
Step 4: Final Answer:
The matrix \(A\) satisfies the equation:
\[
\boxed{A^3 - 6A^2 + 11A - I = 0}
\]