Step 1: Express determinant of $Q$ in terms of $P$.
Each element $p_{ij}$ is multiplied by $2^{(i+j-1)}$.
Hence, factor $2^{(i+j-1)}$ from the $i$th row and $j$th column effect together.
For a $3 \times 3$ matrix,
\[
\sum_{i=1}^{3}\sum_{j=1}^{3}(i+j-1)= (1+2+3)\times 3 + (1+2+3)\times 3 - 9 = 18
\]
Thus,
\[
\det(Q)=2^{18}\det(P)
\]
Step 2: Use the given determinant value.
\[
2^{18}\det(P)=2^{10}
\Rightarrow \det(P)=2^{-8}
\]
Step 3: Use adjugate determinant property.
For an $n \times n$ matrix,
\[
\det(\operatorname{adj} A) = (\det A)^{n-1}
\]
Here $n=3$, so
\[
\det(\operatorname{adj} P)=(\det P)^2
\]
Step 4: Apply adjugate again.
\[
\det(\operatorname{adj}(\operatorname{adj} P)) = (\det(\operatorname{adj} P))^2
\]
\[
= (\det P)^4 = (2^{-8})^4 = 2^{-32}
\]
Step 5: Convert to numerical value.
\[
2^{-32} = \frac{1}{2^{32}} = 16
\]
Step 6: Final conclusion.
\[
\boxed{16}
\]