Step 1: Subtract the first row from the second row: \( R_2 \rightarrow R_2 - R_1 \)
\( \begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & 1 & 2 & | & 3 \\ 2 & 5 & a & | & 12 \end{pmatrix} \)
Step 2: Subtract twice the first row from the third row: \( R_3 \rightarrow R_3 - 2R_1 \)
\( \begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & 1 & 2 & | & 3 \\ 0 & 1 & a - 6 & | & 0 \end{pmatrix} \)
Step 3: Subtract the second row from the third row: \( R_3 \rightarrow R_3 - R_2 \)
\( \begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & 1 & 2 & | & 3 \\ 0 & 0 & a - 8 & | & -3 \end{pmatrix} \)
For the system to have no solution, the third row must be inconsistent, meaning we need the last entry in the third row to be nonzero while the coefficient of \(z\) is zero. Thus, for inconsistency:
\( a - 8 = 0 \quad \Rightarrow \quad a = 8 \)
Thus, the value of \(a\) that makes the system inconsistent is \(a = 8\).