Step 1: Subtract the first row from the second row: \( R_2 \rightarrow R_2 - R_1 \)
\( \begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & 1 & 2 & | & 3 \\ 2 & 5 & a & | & 12 \end{pmatrix} \)
Step 2: Subtract twice the first row from the third row: \( R_3 \rightarrow R_3 - 2R_1 \)
\( \begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & 1 & 2 & | & 3 \\ 0 & 1 & a - 6 & | & 0 \end{pmatrix} \)
Step 3: Subtract the second row from the third row: \( R_3 \rightarrow R_3 - R_2 \)
\( \begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & 1 & 2 & | & 3 \\ 0 & 0 & a - 8 & | & -3 \end{pmatrix} \)
For the system to have no solution, the third row must be inconsistent, meaning we need the last entry in the third row to be nonzero while the coefficient of \(z\) is zero. Thus, for inconsistency:
\( a - 8 = 0 \quad \Rightarrow \quad a = 8 \)
Thus, the value of \(a\) that makes the system inconsistent is \(a = 8\).

Then, which one of the following is TRUE?
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:

where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))