The system of equations will have a unique solution as long as the determinant of the coefficient matrix is non-zero. To find this, we calculate the determinant of the coefficient matrix:
\[
\text{det} \begin{bmatrix} 2 & 3 & 5
7 & 3 & -2
2 & 3 & \lambda \end{bmatrix}
\]
Expanding the determinant, we get:
\[
\text{det} = 2 \left( 3 \cdot \lambda - (-2 \cdot 3) \right) - 3 \left( 7 \cdot \lambda - (-2 \cdot 2) \right) + 5 \left( 7 \cdot 3 - 3 \cdot 2 \right)
\]
This simplifies to:
\[
\text{det} = 2 (3\lambda + 6) - 3 (7\lambda + 4) + 5 (21 - 6)
\]
Simplifying further:
\[
\text{det} = 6\lambda + 12 - 21\lambda - 12 + 75 = -15\lambda + 75
\]
For the system to have a unique solution, the determinant must be non-zero. Therefore, we set:
\[
-15\lambda + 75 \neq 0
\]
Solving for \( \lambda \):
\[
\lambda \neq 5
\]
Thus, the system has a unique solution for all values of \( \lambda \) except when \( \lambda = 5 \).