Step 1: Analyze each functional dependency statement.
Option (1): \( (X, Y) \rightarrow (Z, W) \) does not necessarily imply \( X \rightarrow (Z, W) \). For example, if \( X \) does not uniquely determine \( Z \) or \( W \) without \( Y \), this fails. Hence, this is FALSE.
Option (2): \( (X, Y) \rightarrow (Z, W) \) implies \( (X, Y) \rightarrow Z \), as \( Z \) is part of the attributes determined by \( (X, Y) \). This is TRUE.
Option (3): From the given dependencies \( (X, Y) \rightarrow Z \) and \( W \rightarrow Y \), we can infer \( (X, W) \rightarrow Z \) by substitution. This is TRUE.
Option (4): The transitivity property of functional dependency ensures \( X \rightarrow Y \text{ and } Y \rightarrow Z \) implies \( X \rightarrow Z \). This is TRUE.
Final Answer:
\[
\boxed{(2), (3), (4)}
\]