We are given the surface integral \( \int_S x^2 \, dS \) over the upper hemisphere defined by the equation:
\[
z = \sqrt{1 - x^2 - y^2}
\]
The surface is a hemisphere with radius 1. To calculate the surface integral, we use the formula for a surface integral over a parameterized surface:
\[
\int_S f(x, y, z) \, dS = \iint_D f(x(u, v), y(u, v), z(u, v)) \left\| \frac{\partial(x, y, z)}{\partial(u, v)} \right\| \, du \, dv
\]
In spherical coordinates, for a hemisphere, the surface element \( dS \) is given by:
\[
dS = \sin \theta \, d\theta \, d\phi
\]
where \( \theta \) is the polar angle, ranging from 0 to \( \frac{\pi}{2} \) (upper hemisphere), and \( \phi \) is the azimuthal angle, ranging from 0 to \( 2\pi \).
Now, to compute the integral, we need the integrand \( x^2 \), which in spherical coordinates is \( x = \sin \theta \cos \phi \). Thus:
\[
x^2 = \sin^2 \theta \cos^2 \phi
\]
The surface integral becomes:
\[
\int_S x^2 \, dS = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \sin^2 \theta \cos^2 \phi \sin \theta \, d\theta \, d\phi
\]
First, evaluate the integral with respect to \( \phi \):
\[
\int_0^{2\pi} \cos^2 \phi \, d\phi = \pi
\]
Next, integrate with respect to \( \theta \):
\[
\int_0^{\frac{\pi}{2}} \sin^3 \theta \, d\theta = \frac{4}{3}
\]
Multiplying these results:
\[
\int_S x^2 \, dS = \frac{4}{3} \times \pi = \frac{\pi}{4}
\]
Thus, the value of the surface integral is \( \frac{\pi}{4} \).