Let's denote the given series as S:
$S = \frac{1}{5}\left(\frac{1}{5} - \frac{1}{7}\right) + \left(\frac{1}{5}\right)^2\left[\left(\frac{1}{5}\right)^2 - \left(\frac{1}{7}\right)^2\right] + \left(\frac{1}{5}\right)^3\left[\left(\frac{1}{5}\right)^3 - \left(\frac{1}{7}\right)^3\right] + \dots$
We can rewrite this as:
$S = \left(\frac{1}{5}\right)^2 - \left(\frac{1}{5}\right)\left(\frac{1}{7}\right) + \left(\frac{1}{5}\right)^4 - \left(\frac{1}{5}\right)^2\left(\frac{1}{7}\right)^2 + \left(\frac{1}{5}\right)^6 - \left(\frac{1}{5}\right)^3\left(\frac{1}{7}\right)^3 + \dots$
Now, let's group the terms:
$S = \left[\left(\frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^4 + \left(\frac{1}{5}\right)^6 + \dots\right] - \left[\left(\frac{1}{5}\right)\left(\frac{1}{7}\right) + \left(\frac{1}{5}\right)^2\left(\frac{1}{7}\right)^2 + \left(\frac{1}{5}\right)^3\left(\frac{1}{7}\right)^3 + \dots\right]$
The first series is a geometric series with first term $a = \left(\frac{1}{5}\right)^2$ and common ratio $r = \left(\frac{1}{5}\right)^2$.
The second series is also a geometric series with first term $a = \left(\frac{1}{5}\right)\left(\frac{1}{7}\right)$ and common ratio $r = \left(\frac{1}{5}\right)\left(\frac{1}{7}\right)$.
Using the formula for the sum of an infinite geometric series ($S = \frac{a}{1-r}$), we can find the sum of both series and subtract them to get the value of S.
After calculations, we get: $S = \frac{5}{408}$
Therefore, the sum of the infinite series is 5/408.
Which letter replaces the question mark? A, D, G, J, M, ?
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: