- Step 1: For a GP, sum of first $n$ terms = $a \frac{r^n - 1}{r - 1}$. Given $a = 1$, $n = 10$, sum = 1023.
- Step 2: So, $\frac{r^{10} - 1}{r - 1} = 1023$.
- Step 3: Try $r = 2$: $\frac{2^{10} - 1}{2 - 1} = \frac{1024 - 1}{1} = 1023$, matches.
- Step 4: Verify: Terms are $1, 2, 4, \ldots, 512$, sum = $1 + 2 + 4 + \cdots + 512 = 1023$.
- Step 5: Check options: Option (1) is 2, correct.