Let the numbers be $n-3, n-1, n+1, n+3$. Their sum:
\[
4n
\]
Condition: $\frac{4n}{10}$ is a perfect square $\Rightarrow \frac{2n}{5} = k^2$ for some integer $k$.
Thus:
\[
n = \frac{5k^2}{2}
\]
$n$ must be integer ⇒ $k^2$ even ⇒ $k$ even ⇒ $k=2m$:
\[
n = \frac{5 \cdot 4m^2}{2} = 10m^2
\]
Possible $n$: 10, 40, 90, etc. Among choices, only 41 is close to form of $n \pm 1, n \pm 3$ from $n=40$. So 41 is valid.
\[
\boxed{41}
\]