Step 1: Understanding the Question:
We are given the formula for the sum of the first 'n' terms (S\(_n\)) of an Arithmetic Progression (A.P.). We need to find the 10th term (a\(_{10}\)) of this A.P.
Step 2: Key Formula or Approach:
The n\(^{th}\) term of an A.P. can be found from the sum of n terms using the relation:
\[ a_n = S_n - S_{n-1} \]
This formula works because the sum up to n terms minus the sum up to (n-1) terms leaves only the n\(^{th}\) term.
Step 3: Detailed Explanation:
To find the 10th term (a\(_{10}\)), we will use the formula with n = 10:
\[ a_{10} = S_{10} - S_{9} \]
First, let's calculate S\(_{10}\) using the given formula S\(_n\) = n\(^2\) + 4n:
\[ S_{10} = (10)^2 + 4(10) = 100 + 40 = 140 \]
Next, let's calculate S\(_{9}\):
\[ S_{9} = (9)^2 + 4(9) = 81 + 36 = 117 \]
Now, we can find a\(_{10}\):
\[ a_{10} = 140 - 117 = 23 \]
Step 4: Final Answer:
The 10th term of the A.P. is 23. Therefore, option (B) is the correct answer.