Step 1: Gibbs free energy is related to e.m.f. using: \[ \Delta G^0 = -n F E^0_{\text{cell}} \] where \( n = 2 \) (electrons transferred), \( F = 96500 \) C/mol, and \( E^0_{\text{cell}} = 1.1V \).
Step 2: Calculate: \[ \Delta G^0 = - (2 \times 96500 \times 1.1) \] \[ \Delta G^0 = -212300 \text{ J/mol} = -212.3 \text{ kJ/mol} \] Thus, the Gibbs free energy is **-212.3 kJ/mol**.
List-I (Symbol of electrical property) | List-II (Units) |
---|---|
A) \( \Omega \) | I) S cm\(^{-1}\) |
B) G | II) m\(^{-1}\) |
C) \( \kappa \) | III) S cm\(^2\) mol\(^{-1}\) |
D) G\(^*\) | IV) S |
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $