The first 10 multiples of 4 are: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40.
These can be written as \(4k\) for \(k=1, 2, \dots, 10\).
Let \(x_k = 4k\).
Mean (\(\bar{x}\)):
\( \bar{x} = \frac{\sum_{k=1}^{10} 4k}{10} = \frac{4 \sum_{k=1}^{10} k}{10} \).
We know \(\sum_{k=1}^{N} k = \frac{N(N+1)}{2}\). So for N=10, \(\sum_{k=1}^{10} k = \frac{10(11)}{2} = 55\).
\( \bar{x} = \frac{4 \times 55}{10} = \frac{220}{10} = 22 \).
Variance (\(\sigma^2\)):
The variance of the first N natural numbers \(1, 2, \dots, N\) is \(\sigma_N^2 = \frac{N^2-1}{12}\).
The numbers here are \(4 \times 1, 4 \times 2, \dots, 4 \times 10\).
If \(y_i = c x_i\), then \(\text{Var}(y) = c^2 \text{Var}(x)\).
Here, our numbers are \(4k\). Let \(X\) be the random variable taking values \(1,2,\dots,10\).
\(\text{Var}(X) = \frac{10^2-1}{12} = \frac{99}{12} = \frac{33}{4} = 8.25\).
The numbers are \(4X\). So, Variance(\(4X\)) = \(4^2 \text{Var}(X) = 16 \times \text{Var}(X)\).
\( \sigma^2 = 16 \times \frac{33}{4} = 4 \times 33 = 132 \).
Standard Deviation (\(\sigma\)):
\( \sigma = \sqrt{\text{Variance}} = \sqrt{132} \).
\( \sqrt{132} = \sqrt{4 \times 33} = 2\sqrt{33} \).
Now, approximate \(\sqrt{33}\). We know \(5^2=25, 6^2=36\). So \(\sqrt{33}\) is between 5 and 6.
\(5.5^2 = 30.25\).
\(5.7^2 \approx (6-0.3)^2 = 36 - 3.6 + 0.09 = 32.49\).
\(5.75^2 \approx (5.7+0.05)^2 \dots\)
Let's estimate \(\sqrt{33}\).
\( \sqrt{33} \approx 5.74456 \).
So, \(\sigma = 2 \times 5.74456 \approx 11.48912\).
This is approximately 11.5.
Option (c) is 11.5.
Alternative calculation for variance: \( \sigma^2 = \frac{\sum (x_i - \bar{x})^2}{N} \).
\(x_i - \bar{x}\):
(4-22)=-18, (8-22)=-14, (12-22)=-10, (16-22)=-6, (20-22)=-2,
(24-22)=2, (28-22)=6, (32-22)=10, (36-22)=14, (40-22)=18.
Squared deviations:
\( (-18)^2 = 324 \)
\( (-14)^2 = 196 \)
\( (-10)^2 = 100 \)
\( (-6)^2 = 36 \)
\( (-2)^2 = 4 \)
\( (2)^2 = 4 \)
\( (6)^2 = 36 \)
\( (10)^2 = 100 \)
\( (14)^2 = 196 \)
\( (18)^2 = 324 \)
Sum of squared deviations = \(2 \times (324+196+100+36+4) = 2 \times (520+100+36+4) = 2 \times (620+36+4) = 2 \times (656+4) = 2 \times 660 = 1320\).
Variance \(\sigma^2 = \frac{1320}{10} = 132\).
Standard deviation \(\sigma = \sqrt{132} \approx 11.489\).
Rounding to one decimal place gives 11.5.
\[ \boxed{11.5} \]