Step 1: Formula for Variance \[ \sigma^2 = \frac{\sum x_i^2}{n} - \left( \frac{\sum x_i}{n} \right)^2 \] Given that standard deviation \( \sigma = 2 \), so variance \( \sigma^2 = 4 \). Also, we know: \[ \sum x_i^2 = 360, \quad n = 9 \] Step 2: Compute the Mean
Let \( \bar{x} \) be the mean: \[ 4 = \frac{360}{9} - \bar{x}^2 \] \[ 4 = 40 - \bar{x}^2 \] \[ \bar{x}^2 = 36 \] \[ \bar{x} = 6 \]
Final Answer: \[ \boxed{6} \]
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]