Step 1: Formula for Variance \[ \sigma^2 = \frac{\sum x_i^2}{n} - \left( \frac{\sum x_i}{n} \right)^2 \] Given that standard deviation \( \sigma = 2 \), so variance \( \sigma^2 = 4 \). Also, we know: \[ \sum x_i^2 = 360, \quad n = 9 \] Step 2: Compute the Mean
Let \( \bar{x} \) be the mean: \[ 4 = \frac{360}{9} - \bar{x}^2 \] \[ 4 = 40 - \bar{x}^2 \] \[ \bar{x}^2 = 36 \] \[ \bar{x} = 6 \]
Final Answer: \[ \boxed{6} \]