Step 1: Formula for Variance \[ \sigma^2 = \frac{\sum x_i^2}{n} - \left( \frac{\sum x_i}{n} \right)^2 \] Given that standard deviation \( \sigma = 2 \), so variance \( \sigma^2 = 4 \). Also, we know: \[ \sum x_i^2 = 360, \quad n = 9 \] Step 2: Compute the Mean
Let \( \bar{x} \) be the mean: \[ 4 = \frac{360}{9} - \bar{x}^2 \] \[ 4 = 40 - \bar{x}^2 \] \[ \bar{x}^2 = 36 \] \[ \bar{x} = 6 \]
Final Answer: \[ \boxed{6} \]
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]