Step 1: Formula for refractive index.
The refractive index of one medium with respect to another is given by
\[
n_{21} = \frac{v_1}{v_2}
\]
where \( v_1 \) and \( v_2 \) are the speeds of light in the two media.
(i) Refractive index of glass relative to water:
Let \( v_{\text{water}} = 2.25 \times 10^8 \, \text{m/s} \) and \( v_{\text{glass}} = 2.0 \times 10^8 \, \text{m/s} \).
\[
n_{\text{glass/water}} = \frac{v_{\text{water}}}{v_{\text{glass}}} = \frac{2.25 \times 10^8}{2.0 \times 10^8} = 1.125
\]
Hence, refractive index of glass relative to water = \( 1.125 \).
(ii) Refractive index of glass relative to air:
The speed of light in air is approximately \( 3.0 \times 10^8 \, \text{m/s} \).
\[
n_{\text{glass/air}} = \frac{v_{\text{air}}}{v_{\text{glass}}} = \frac{3.0 \times 10^8}{2.0 \times 10^8} = 1.5
\]
Thus, refractive index of glass relative to air = \( 1.5 \).
Step 2: Conclusion.
\[
\boxed{n_{\text{glass/water}} = 1.125, n_{\text{glass/air}} = 1.5}
\]