The upward lift on a wing is given by Bernoulli's principle, which relates the difference in the velocities of air over the upper and lower surfaces of the wing to the lift force.
The pressure difference \( \Delta P \) between the upper and lower surfaces is related to the velocities \( v_1 \) and \( v_2 \) by: \[ \Delta P = \frac{1}{2} \rho (v_1^2 - v_2^2) \] The upward lift \( L \) is the force exerted by this pressure difference on the cross-sectional area of the wing. Therefore, the lift force is: \[ L = \Delta P \cdot A = \frac{1}{2} \rho A (v_1^2 - v_2^2) \]
Thus, the correct answer is: \[ \text{(3) } \frac{1}{2} \rho A (v_1^2 - v_2^2) \]
Two point charges M and N having charges +q and -q respectively are placed at a distance apart. Force acting between them is F. If 30% of charge of N is transferred to M, then the force between the charges becomes:
If the ratio of lengths, radii and Young's Moduli of steel and brass wires in the figure are $ a $, $ b $, and $ c $ respectively, then the corresponding ratio of increase in their lengths would be: