Given:
Mass of the body, \( m = 10\, \text{kg} \)
Initial speed, \( u = 20\, \text{ms}^{-1} \)
Final speed, \( v = 30\, \text{ms}^{-1} \)
Initial kinetic energy,
\[
KE_i = \frac{1}{2} m u^2 = \frac{1}{2} \times 10 \times (20)^2 = 5 \times 400 = 2000\, \text{J}
\]
Final kinetic energy,
\[
KE_f = \frac{1}{2} m v^2 = \frac{1}{2} \times 10 \times (30)^2 = 5 \times 900 = 4500\, \text{J}
\]
Increase in kinetic energy,
\[
\Delta KE = KE_f - KE_i = 4500 - 2000 = 2500\, \text{J}
\]
Final answer:
\[
\boxed{2500\, \text{J}}
\]