To solve the problem, we need to find the heat required to raise the temperature of 1 kg of a substance from $-73^{\circ}C$ to $27^{\circ}C$.
1. Understanding the Specific Heat Capacity Relation:
The specific heat capacity of the substance is given by $C = kT$, where $k$ is a constant and $T$ is the absolute temperature.
2. Converting Temperatures to Kelvin:
We have $T_1 = -73^{\circ}C = -73 + 273 = 200 \, \text{K}$ and $T_2 = 27^{\circ}C = 27 + 273 = 300 \, \text{K}$.
3. Formula for Heat Required:
The heat required is given by:
$ Q = \int_{T_1}^{T_2} mC \, dT = \int_{T_1}^{T_2} m(kT) \, dT$
where $m = 1$ kg.
4. Simplifying the Integral:
We now have:
$ Q = \int_{200}^{300} 1(kT) \, dT = k \int_{200}^{300} T \, dT = k \left[ \frac{T^2}{2} \right]_{200}^{300}$
5. Calculating the Integral:
This becomes:
$ Q = k \left(\frac{300^2}{2} - \frac{200^2}{2} \right) = k \left(\frac{90000}{2} - \frac{40000}{2} \right)$
6. Final Simplification:
We get:
$ Q = k \left(\frac{50000}{2} \right) = k (25000)$
7. Solving for $n$:
Given that $Q = nk$, we have:
$ nk = 25000k$
This implies:
$ n = 25000$
Final Answer:
The final answer is $\boxed{25000}$.
To solve the problem, we calculate the heat required to raise the temperature of 1 kg of the substance when its specific heat capacity depends on temperature.
Given:
Specific heat capacity:
\[
C = k T
\]
where \(k\) is a constant and \(T\) is the absolute temperature (in Kelvin).
Temperature change from \(-73^\circ C\) to \(27^\circ C\).
Step 1: Convert temperatures to Kelvin:
\[
T_1 = -73 + 273 = 200\, K
\]
\[
T_2 = 27 + 273 = 300\, K
\]
Step 2: Calculate heat required:
Heat for mass \(m = 1\, kg\) with variable heat capacity:
\[
Q = m \int_{T_1}^{T_2} C \, dT = \int_{200}^{300} k T \, dT = k \int_{200}^{300} T \, dT
\]
\[
Q = k \left[ \frac{T^2}{2} \right]_{200}^{300} = k \left( \frac{300^2}{2} - \frac{200^2}{2} \right) = \frac{k}{2} (90000 - 40000) = \frac{k}{2} \times 50000 = 25000 k
\]
Step 3: Express heat as \(n k\):
\[
Q = n k \implies n = 25000
\]
Final Answer:
\[
\boxed{25000}
\]
Match the LIST-I with LIST-II
| LIST-I | LIST-II | ||
|---|---|---|---|
| (Type of Fouling) | (Fouling Mechanism) | ||
| A | Precipitation | IV | Precipitation of dissolved substances... |
| B | Freezing | III | Solidification of Liquid components... |
| C | Particulate | I | Accumulation of fine particles suspended... |
| D | Corrosion | II | Heat transfer surface reacts with ambient... |
Identify the evaporator 
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?