To solve the problem, we analyze the fluorination reaction of phosphorus pentachloride (PCl5) in a polar organic solvent.
Fluorination of PCl5:
When PCl5 reacts with fluorine or a fluorinating agent in polar organic solvents, it often forms ionic species due to ligand exchange and formation of complex ions.
Known species formed:
- The cation [PCl4]+ (tetrachlorophosphonium ion)
- The anion [PF6]- (hexafluorophosphate ion)
These ions result from partial substitution of chlorine by fluorine in PCl5 and subsequent complex formation.
Therefore, the species formed are:
\[
[PCl_4]^+ [PF_6]^-
\]
Final Answer:
\[
\boxed{\text{[PCl}_4]^+ \text{[PF}_6]^-\ \text{and not the other species}}
\]
which corresponds to the second option:
[PCl4]+[PCl4F2]- and [PCl4]+[PF6]-
Identify the correct orders against the property mentioned:
A. H$_2$O $>$ NH$_3$ $>$ CHCl$_3$ - dipole moment
B. XeF$_4$ $>$ XeO$_3$ $>$ XeF$_2$ - number of lone pairs on central atom
C. O–H $>$ C–H $>$ N–O - bond length
D. N$_2$>O$_2$>H$_2$ - bond enthalpy
Choose the correct answer from the options given below:
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.