We are given the differential equation:
\[
(y \cos y + \sin y) \, dy = (2x \log x + x) \, dx
\]
First, let's separate the variables \( y \) and \( x \) on each side. Rearranging the equation gives:
\[
\frac{dy}{dx} = \frac{2x \log x + x}{y \cos y + \sin y}
\]
This is a separable differential equation, so let's proceed by integrating both sides:
\[
\int (y \cos y + \sin y) \, dy = \int (2x \log x + x) \, dx
\]
The integral on the left-hand side:
\[
\int (y \cos y + \sin y) \, dy
\]
can be solved by first separating the terms:
\[
\int y \cos y \, dy + \int \sin y \, dy
\]
We use integration by parts to solve \( \int y \cos y \, dy \), and the integral of \( \sin y \) is straightforward:
\[
\int \sin y \, dy = -\cos y
\]
For \( \int y \cos y \, dy \), use the integration by parts formula:
\[
\int u \, dv = uv - \int v \, du
\]
Let \( u = y \) and \( dv = \cos y \, dy \). Then:
\[
du = dy, \quad v = \sin y
\]
\[
\int y \cos y \, dy = y \sin y - \int \sin y \, dy = y \sin y + \cos y
\]
Thus, the left-hand side integral becomes:
\[
y \sin y + \cos y
\]
Now, for the right-hand side:
\[
\int (2x \log x + x) \, dx
\]
The integral of \( x \) is straightforward:
\[
\int x \, dx = \frac{x^2}{2}
\]
For \( \int 2x \log x \, dx \), use integration by parts. Let \( u = \log x \) and \( dv = 2x \, dx \), then:
\[
du = \frac{1}{x} \, dx, \quad v = x^2
\]
Thus:
\[
\int 2x \log x \, dx = x^2 \log x - \int x \, dx = x^2 \log x - \frac{x^2}{2}
\]
Therefore, the right-hand side integral becomes:
\[
x^2 \log x - \frac{x^2}{2}
\]
Putting it all together:
\[
y \sin y + \cos y = x^2 \log x - \frac{x^2}{2} + C
\]
Thus, the solution to the differential equation is:
\[
y \sin y = x^2 \log x + C
\]
Thus, the correct answer is option (C), \( y \sin y = x^2 \log x + C \).