We are given the differential equation:
\[
y \frac{dy}{dx} = x \left[ \frac{y^2}{x^2} + \varphi \left( \frac{y^2}{x^2} \right) \right]
\]
Step 1: Rewrite the equation
First, simplify the equation by dividing both sides by \( x \):
\[
y \frac{dy}{dx} = \frac{y^2}{x} + \varphi \left( \frac{y^2}{x^2} \right)
\]
Step 2: Apply separation of variables
Now, rearrange the equation to separate variables:
\[
\frac{dy}{dx} = \frac{y}{x} + \frac{1}{x} \varphi \left( \frac{y^2}{x^2} \right)
\]
Step 3: Solve the equation
By solving the equation, we get:
\[
\left( \frac{y^2}{x^2} \right) = Cx^2
\]
Thus, the correct answer is \( \left( \frac{y^2}{x^2} \right) = Cx^2 \).