We are given the differential equation:
\[
\sec^2 x \, \tan y \, dx + \sec y \, \tan x \, dy = 0
\]
Step 1: Rearrange the equation
Rearrange the terms:
\[
\frac{\sec y \, \tan x}{\sec^2 x \, \tan y} = -\frac{dy}{dx}
\]
Simplify:
\[
\frac{\sec y \, \tan x}{\tan y \, \sec^2 x} = -\frac{dy}{dx}
\]
Step 2: Solve the equation
Integrating both sides, we get the solution:
\[
\tan x \, \tan y = C
\]
Thus, the correct answer is \( \tan x \, \tan y = C \).