Question:

The solution of the differential equation dydx=sec(yx)+yx is:

Updated On: Jul 27, 2024
  • (A) cos(yx)=log(cx)
  • (B) sin(xy)=log(cx)
  • (C) sin(yx)=log(cx)
  • (D) None of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Explanation:
Given,dydx=sec(yx)+yx(1) Let,yx=t y=xtDifferentiating with respect to x, we getdydx=x×dtdx+t×ddxxWe known that:ddxxy=y×ddxx+x×ddxySo,dydx=x×dtdx+tNow, Putting these value in equation (1), we getxdtdx+t=sect+txdtdx=sectdtsect=dxxIntegrating both sides, we getdtsect=dxxcostdt=dxxsint=logx+logcsint=log(cx)(logm+logn=log(mn))sin(yx)=log(cx)Hence, the correct option is (C).
Was this answer helpful?
0
0