To find the smallest integer \( n \) such that \( n^3 - 11n^2 + 32n - 28 > 0 \), we follow these steps:
First, substitute incremental integer values starting from \( n = 8 \):
n | f(n) = \( n^3 - 11n^2 + 32n - 28 \) | f(n) > 0? |
---|---|---|
8 | \( 8^3 - 11 \times 8^2 + 32 \times 8 - 28 = 512 - 704 + 256 - 28 = 36 \) | Yes |
7 | \( 7^3 - 11 \times 7^2 + 32 \times 7 - 28 = 343 - 539 + 224 - 28 = 0 \) | No, equals 0 |
The computed value \( n = 8 \) falls within the provided range: \([8, 8]\).