Question:

The shortest distance between the skew lines \( \vec{r} = (2\hat{i} - \hat{j}) + t(\hat{i} + 2\hat{k}) \) and \( \vec{r} = (-2\hat{i} + \hat{k}) + s(\hat{i} - \hat{j} - \hat{k}) \) is:

Show Hint

To find the shortest distance between two skew lines, use the formula involving the cross product of direction vectors and the vector connecting points on the lines.
Updated On: May 18, 2025
  • \( \frac{3\sqrt{2}}{\sqrt{7}} \)
  • \( \frac{3}{\sqrt{7}} \)
  • \( \frac{3}{\sqrt{14}} \)
  • \( \frac{4}{\sqrt{14}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

We are given the parametric equations of two skew lines: \[ \vec{r}_1 = (2\hat{i} - \hat{j}) + t(\hat{i} + 2\hat{k}), \] and \[ \vec{r}_2 = (-2\hat{i} + \hat{k}) + s(\hat{i} - \hat{j} - \hat{k}). \] To find the shortest distance between these skew lines, we use the formula: \[ d = \frac{|(\vec{r}_2 - \vec{r}_1) \cdot (\vec{v}_1 \times \vec{v}_2)|}{|\vec{v}_1 \times \vec{v}_2|}, \] where \( \vec{v}_1 \) and \( \vec{v}_2 \) are the direction vectors of the two lines, and \( \vec{r}_1 \) and \( \vec{r}_2 \) are points on the lines. Here, \[ \vec{v}_1 = \hat{i} + 2\hat{k}, \quad \vec{v}_2 = \hat{i} - \hat{j} - \hat{k}, \] and \[ \vec{r}_2 - \vec{r}_1 = (-2\hat{i} + \hat{k}) - (2\hat{i} - \hat{j}) = -4\hat{i} + \hat{j} + \hat{k}. \] Now, compute the cross product \( \vec{v}_1 \times \vec{v}_2 \), and then substitute in the formula for the shortest distance. After performing the necessary calculations, we get: \[ d = \frac{3\sqrt{2}}{\sqrt{7}}. \] Thus, the correct answer is \( \frac{3\sqrt{2}}{\sqrt{7}} \).
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given two skew lines:
\[ \vec{r}_1 = (2\hat{i} - \hat{j}) + t(\hat{i} + 2\hat{k}) \] \[ \vec{r}_2 = (-2\hat{i} + \hat{k}) + s(\hat{i} - \hat{j} - \hat{k}) \] Find the shortest distance between them.

Step 1: Identify direction vectors and points on each line:
\[ \vec{d}_1 = \hat{i} + 0\hat{j} + 2\hat{k} = (1, 0, 2) \] \[ \vec{d}_2 = \hat{i} - \hat{j} - \hat{k} = (1, -1, -1) \] Points on lines:
\[ \vec{A} = (2, -1, 0), \quad \vec{B} = (-2, 0, 1) \]

Step 2: The shortest distance \( D \) between skew lines is given by:
\[ D = \frac{|(\vec{B} - \vec{A}) \cdot (\vec{d}_1 \times \vec{d}_2)|}{|\vec{d}_1 \times \vec{d}_2|} \]

Step 3: Calculate \( \vec{B} - \vec{A} \):
\[ \vec{B} - \vec{A} = (-2 - 2, 0 - (-1), 1 - 0) = (-4, 1, 1) \]

Step 4: Calculate cross product \( \vec{d}_1 \times \vec{d}_2 \):
\[ \vec{d}_1 \times \vec{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 2 \\ 1 & -1 & -1 \\ \end{vmatrix} = \hat{i}(0 \times -1 - 2 \times -1) - \hat{j}(1 \times -1 - 2 \times 1) + \hat{k}(1 \times -1 - 0 \times 1) \] \[ = \hat{i}(0 + 2) - \hat{j}(-1 - 2) + \hat{k}(-1 - 0) = 2 \hat{i} + 3 \hat{j} - \hat{k} = (2, 3, -1) \]

Step 5: Calculate numerator \( |(\vec{B} - \vec{A}) \cdot (\vec{d}_1 \times \vec{d}_2)| \):
\[ (-4, 1, 1) \cdot (2, 3, -1) = (-4)(2) + (1)(3) + (1)(-1) = -8 + 3 - 1 = -6 \] Absolute value:
\[ | -6 | = 6 \]

Step 6: Calculate denominator \( |\vec{d}_1 \times \vec{d}_2| \):
\[ \sqrt{2^2 + 3^2 + (-1)^2} = \sqrt{4 + 9 + 1} = \sqrt{14} \]

Step 7: Shortest distance:
\[ D = \frac{6}{\sqrt{14}} = \frac{3 \times 2}{\sqrt{14}} = \frac{3 \sqrt{2}}{\sqrt{7}} \] (since \( \sqrt{14} = \sqrt{7 \times 2} = \sqrt{7} \sqrt{2} \), divide numerator and denominator by \( \sqrt{2} \))

Therefore,
\[ \boxed{\frac{3 \sqrt{2}}{\sqrt{7}}} \]
Was this answer helpful?
0
0