Question:

The set of all real values of $x$ for which $(x^2 - |x+9| + x)>0$ is:

Show Hint

When solving inequalities involving absolute values, always split into cases based on the sign of the expression inside the absolute value. Analyze each case separately, then combine intervals carefully by intersection and union.
Updated On: Dec 4, 2025
  • $(-\infty,-9)\cup(3,\infty)$
  • $(-\infty,-3)\cup(9,\infty)$
  • $(-\infty,-3)\cup(3,\infty)$
  • $(-9,-3)\cup(3,9)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We are given the inequality \[ x^2 - |x+9| + x>0 \quad\Longleftrightarrow\quad x^2 + x - |x+9|>0. \] Since the absolute value depends on the sign of \(x+9\), we split into two cases. Case 1: \(x+9 \ge 0 \;\Rightarrow\; x \ge -9\). Then \(|x+9| = x+9\). Substitute: \[ x^2 + x - (x+9)>0 \;\Rightarrow\; x^2 - 9>0 \;\Rightarrow\; (x-3)(x+3)>0. \] This product is positive when \[ x<-3 \quad \text{or} \quad x>3. \] But our case requires \(x \ge -9\). Intersection gives: \[ [-9,-3) \cup (3,\infty). \] Case 2: \(x+9<0 \;\Rightarrow\; x<-9\). Then \(|x+9| = -x-9\). Substitute: \[ x^2 + x - (-x-9)>0 \;\Rightarrow\; x^2 + 2x + 9>0. \] The discriminant is \[ D = 2^2 - 4\cdot 1 \cdot 9 = -32<0, \] so the quadratic is always positive (opens upward). Thus the inequality holds for all \(x<-9\). Case 2 gives: \((- \infty, -9)\).
Step 3: Combine both cases. \[ (-\infty,-9) \cup [-9,-3) \cup (3,\infty) = (-\infty,-3) \cup (3,\infty). \] Therefore, the solution set is: \[ \boxed{(-\infty,-3)\cup(3,\infty)}. \]
Was this answer helpful?
0
0

Questions Asked in CAT exam

View More Questions