We are given the inequality \[ x^2 - |x+9| + x > 0, \] which can be rewritten as \[ x^2 + x - |x+9| > 0. \] Since the absolute value depends on the sign of \(x+9\), we consider two cases. Case 1: \(x+9 \ge 0\), that is \(x \ge -9\). In this case, \(|x+9| = x+9\). Substituting, \[ x^2 + x - (x+9) > 0 \Rightarrow x^2 - 9 > 0 \Rightarrow (x-3)(x+3) > 0. \] This inequality holds when \[ x < -3 \quad \text{or} \quad x > 3. \] Combining with the condition \(x \ge -9\), we obtain \[ [-9,-3) \cup (3,\infty). \] Case 2: \(x+9 < 0\), that is \(x < -9\). Here, \(|x+9| = -x-9\). Substituting, \[ x^2 + x - (-x-9) > 0 \Rightarrow x^2 + 2x + 9 > 0. \] The discriminant of this quadratic is \[ D = 2^2 - 4(1)(9) = -32 < 0, \] and since the coefficient of \(x^2\) is positive, the expression is always positive. Hence, the inequality is satisfied for all \[ x < -9. \] Combining the solutions from both cases, \[ (-\infty,-9) \cup [-9,-3) \cup (3,\infty) = (-\infty,-3) \cup (3,\infty). \] Therefore, the solution set is \[ \boxed{(-\infty,-3)\cup(3,\infty)}. \]
Match List-I with List-II and choose the correct option:
\[ \begin{array}{|l|l|} \hline \textbf{LIST-I (Function)} & \textbf{LIST-II (Expansion)} \\ \hline A. \log(1-x) & I. 1 + \frac{1}{3} + \frac{1}{6} + \frac{3}{40} + \frac{15}{336} + \dots \\ \hline B. \sin^{-1} x & II. 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \\ \hline C. \log 2 & III. x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots, -1 < x \le 1 \\ \hline D. \frac{\pi}{2} & IV. -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots, -1 \le x < 1 \\ \hline \end{array} \]
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: