Given, $A=2 \hat{i}+2 \hat{j}-\hat{k}$ and $B=-\hat{j}+\hat{k}$
Scalar product $A \cdot B=(2 \hat{i}+2 \hat{j}-\hat{k}) \cdot(-\hat{j}+\hat{k})$
Using $\hat{i} \cdot \hat{i}=1, \hat{j} \cdot \hat{j}=1, \hat{k} \cdot \hat{k}=1=1$
we have $A \cdot B=-2-1=-3$