The resistance \( R \) of a wire is given by the formula:
\( R = \rho \frac{L}{A} \)
where \(\rho\) is the resistivity of the material, \( L \) is the length of the wire, and \( A \) is the cross-sectional area.
The cross-sectional area \( A \) of a wire with radius \( r \) is:
\( A = \pi r^2 \)
So, the resistance can be expressed as:
\( R = \rho \frac{L}{\pi r^2} \)
To achieve \( \frac{R}{2} \), the new resistance must be half of the original; hence:
\( \frac{R}{2} = \rho \frac{L'}{\pi (r')^2} \)
Let us analyze the options:
Therefore, the correct choice is: Using a wire of same radius and half length.
A battery of emf \( E \) and internal resistance \( r \) is connected to a rheostat. When a current of 2A is drawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of \( E \) and \( r \).
परसेवा का आनंद — 120 शब्दों में रचनात्मक लेख लिखिए:
Answer the following questions:
[(i)] Explain the structure of a mature embryo sac of a typical flowering plant.
[(ii)] How is triple fusion achieved in these plants?
OR
[(i)] Describe the changes in the ovary and the uterus as induced by the changes in the level of pituitary and ovarian hormones during menstrual cycle in a human female.