The resistance \( R \) of a wire is given by the formula:
\( R = \rho \frac{L}{A} \)
where \(\rho\) is the resistivity of the material, \( L \) is the length of the wire, and \( A \) is the cross-sectional area.
The cross-sectional area \( A \) of a wire with radius \( r \) is:
\( A = \pi r^2 \)
So, the resistance can be expressed as:
\( R = \rho \frac{L}{\pi r^2} \)
To achieve \( \frac{R}{2} \), the new resistance must be half of the original; hence:
\( \frac{R}{2} = \rho \frac{L'}{\pi (r')^2} \)
Let us analyze the options:
Therefore, the correct choice is: Using a wire of same radius and half length.
In a metallic conductor, an electron, moving due to thermal motion, suffers collisions with the heavy fixed ions but after collision, it will emerge with the same speed but in random directions. If we consider all the electrons, their average velocity will be zero. When an electric field is applied, electrons move with an average velocity known as drift velocity (vd). The average time between successive collisions is known as relaxation time (τ ). The magnitude of drift velocity per unit electric field is called mobility (μ). An expression for current through the conductor can be obtained in terms of drift velocity, number of electrons per unit volume (n), electronic charge (−e), and the cross-sectional area (A) of the conductor. This expression leads to an expression between current density (-j) and the electric field (E→ ). Hence, an expression for resistivity (ρ) of a metal is obtained. This expression helps us to understand increase in resistivity of a metal with increase in its temperature, in terms of change in the relaxation time (τ ) and change in the number density of electrons (n).
Bittu and Chintu were partners in a firm sharing profit and losses in the ratio of 4:3. Their Balance Sheet as at 31st March, 2024 was as
On $1^{\text {st }}$ April, 2024, Diya was admitted in the firm for $\frac{1}{7}$ share in the profits on the following terms:
Prepare Revaluation Account and Partners' Capital Accounts.
(a) Calculate the standard Gibbs energy (\(\Delta G^\circ\)) of the following reaction at 25°C:
\(\text{Au(s) + Ca\(^{2+}\)(1M) $\rightarrow$ Au\(^{3+}\)(1M) + Ca(s)} \)
\(\text{E\(^\circ_{\text{Au}^{3+}/\text{Au}} = +1.5 V, E\)\(^\circ_{\text{Ca}^{2+}/\text{Ca}} = -2.87 V\)}\)
\(\text{1 F} = 96500 C mol^{-1}\)
Define the following:
(i) Cell potential
(ii) Fuel Cell
Calculate the emf of the following cell at 25°C:
\[ \text{Zn(s)} | \text{Zn}^{2+}(0.1M) || \text{Cd}^{2+}(0.01M) | \text{Cd(s)} \] Given: \[ E^\circ_{\text{Cd}^{2+}/\text{Cd}} = -0.40 \, V, \, E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.76 \, V \] \[ [\log 10 = 1] \]
Write chemical equations of the following reactions:
(i) Phenol is treated with conc. HNO\(_3\)
(ii) Propene is treated with B\(_2\)H\(_6\) followed by oxidation by H\(_2\)O\(_2\)/OH\(^-\)
(iii) Sodium t-butoxide is treated with CH\(_3\)Cl