The resistance of a material at a different temperature can be calculated using the formula:
\( R_t = R_0 \left( 1 + \alpha t \right) \)
where:
Given:
Substituting these values into the formula:
\( R_{50} = 4 \, \Omega \left( 1 + 5 \times 10^{-3} \times 50 \right) \)
\( R_{50} = 4 \, \Omega \left( 1 + 0.25 \right) \)
\( R_{50} = 4 \, \Omega \times 1.25 \)
\( R_{50} = 5 \, \Omega \)
Thus, the resistance at \( 50^\circ C \) is \( 5 \Omega \).
Therefore, the correct answer is option (E), \( 5 \Omega \).
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to: