Step 1: Expression for outlet concentration in a non-ideal reactor.
For a first-order reaction in a non-ideal reactor, the outlet concentration \( C_{\text{out}} \) is given by:
\[
C_{\text{out}} = C_{\text{in}} \int_0^\infty E(t) e^{-kt} \, dt,
\]
where:
- \( C_{\text{in}} = 2 \, \text{mol/L} \) (inlet concentration),
- \( k = 0.2 \, \text{min}^{-1} \) (rate constant),
- \( E(t) \) is the residence time distribution function.
Step 2: Define \( E(t) \) from the figure.
From the figure, \( E(t) \) is a rectangular function:
\[
E(t) =
\begin{cases}
\frac{1}{2}, & \text{if } 3 \leq t \leq 5,
0, & \text{otherwise}.
\end{cases}
\]
Step 3: Substitute \( E(t) \) into the integral.
The integral becomes:
\[
C_{\text{out}} = C_{\text{in}} \int_3^5 \frac{1}{2} e^{-0.2t} \, dt.
\]
Substitute \( C_{\text{in}} = 2 \):
\[
C_{\text{out}} = 2 \cdot \frac{1}{2} \int_3^5 e^{-0.2t} \, dt = \int_3^5 e^{-0.2t} \, dt.
\]
Step 4: Evaluate the integral.
The integral of \( e^{-0.2t} \) is:
\[
\int e^{-0.2t} \, dt = \frac{e^{-0.2t}}{-0.2}.
\]
Evaluate the definite integral:
\[
\int_3^5 e^{-0.2t} \, dt = \left[ \frac{e^{-0.2t}}{-0.2} \right]_3^5 = \frac{1}{0.2} \left( e^{-0.6} - e^{-1.0} \right).
\]
Step 5: Calculate the exponential terms.
\[
e^{-0.6} \approx 0.5488, \quad e^{-1.0} \approx 0.3679.
\]
Substitute:
\[
\int_3^5 e^{-0.2t} \, dt = \frac{1}{0.2} \left( 0.5488 - 0.3679 \right) = 5 \cdot 0.1809 = 0.905.
\]
Step 6: Conclusion.
The reactant concentration in the exit stream is \( C_{\text{out}} = 0.905 \, \text{mol/L} \).