Step 1: Understanding the Concept:
This problem requires finding the remainder of a large sum, which can be efficiently solved using modular arithmetic. We need to find the value of the expression modulo 9.
Step 2: Key Formula or Approach:
We will use the properties of congruences:
If \(a \equiv b \pmod{m}\) and \(c \equiv d \pmod{m}\), then \(a+c \equiv b+d \pmod{m}\) and \(a^k \equiv b^k \pmod{m}\).
The divisibility rule for 9 states that a number is congruent to the sum of its digits modulo 9.
Step 3: Detailed Explanation:
We need to compute \( (11^{1011} + 1011^{11}) \pmod{9} \). We can compute each term separately.
Term 1: \( 11^{1011} \pmod{9} \)
First, find the remainder of the base:
\( 11 \div 9 \) gives a remainder of 2. So, \( 11 \equiv 2 \pmod{9} \).
Therefore, \( 11^{1011} \equiv 2^{1011} \pmod{9} \).
Now we look for the cycle of powers of 2 modulo 9:
\( 2^1 \equiv 2 \)
\( 2^2 \equiv 4 \)
\( 2^3 \equiv 8 \)
\( 2^4 \equiv 16 \equiv 7 \)
\( 2^5 \equiv 14 \equiv 5 \)
\( 2^6 \equiv 10 \equiv 1 \)
The cycle length is 6. We need to find the exponent 1011 modulo 6.
\( 1011 \div 6 \): \( 1011 = 6 \times 168 + 3 \). So, \( 1011 \equiv 3 \pmod{6} \).
This means \( 2^{1011} \equiv 2^3 \pmod{9} \).
\( 2^3 = 8 \). So, \( 11^{1011} \equiv 8 \pmod{9} \).
Term 2: \( 1011^{11} \pmod{9} \)
First, find the remainder of the base using the sum of digits rule:
Sum of digits of 1011 is \( 1+0+1+1 = 3 \). So, \( 1011 \equiv 3 \pmod{9} \).
Therefore, \( 1011^{11} \equiv 3^{11} \pmod{9} \).
Now we look at powers of 3 modulo 9:
\( 3^1 \equiv 3 \)
\( 3^2 = 9 \equiv 0 \)
For any exponent \(k \ge 2\), \( 3^k = 3^{k-2} \cdot 3^2 \equiv 3^{k-2} \cdot 0 \equiv 0 \pmod{9} \).
Since the exponent is 11, which is greater than 2, we have \( 1011^{11} \equiv 0 \pmod{9} \).
Final Sum:
Now add the results for the two terms:
\( 11^{1011} + 1011^{11} \equiv 8 + 0 \pmod{9} \)
\( \equiv 8 \pmod{9} \)
Step 4: Final Answer:
The remainder when \( 11^{1011} + 1011^{11} \) is divided by 9 is 8.