Let the 4-digit number be \( \overline{abcd} \), where:
\[
a = \text{thousands digit}, \quad
b = \text{hundreds digit}, \quad
c = \text{tens digit}, \quad
d = \text{units digit}
\]
with \( a \neq 0 \).
Step 1: Write equations from the given conditions.
From the question:
\[
a + b + c = 15 \quad \cdots (1)
\]
\[
b + c + d = 16 \quad \cdots (2)
\]
Also,
\[
c = d + 6 \quad \Rightarrow \quad d = c - 6 \quad \cdots (3)
\]
Step 2: Substitute \( d = c - 6 \) in equation (2).
From (2):
\[
b + c + d = 16
\Rightarrow b + c + (c - 6) = 16
\Rightarrow b + 2c - 6 = 16
\Rightarrow b + 2c = 22
\Rightarrow b = 22 - 2c \quad \cdots (4)
\]
Step 3: Use equation (1) to express \( a \) in terms of \( c \).
From (1):
\[
a + b + c = 15
\Rightarrow a + (22 - 2c) + c = 15
\Rightarrow a + 22 - c = 15
\Rightarrow a = 15 - 22 + c = c - 7 \quad \cdots (5)
\]
Step 4: Use digit constraints.
Digits must satisfy \( 0 \leq a,b,c,d \leq 9 \) and \( a \geq 1 \).
From (5): \( a = c - 7 \geq 1 \Rightarrow c \geq 8 \).
Also \( a \leq 9 \Rightarrow c - 7 \leq 9 \Rightarrow c \leq 16 \).
Since \( c \) is a digit, \( c \in \{8,9\} \).
\underline{Case 1:} \( c = 8 \)
\[
a = c - 7 = 1, \quad
b = 22 - 2c = 22 - 16 = 6, \quad
d = c - 6 = 2
\]
Number: \( \overline{abcd} = 1682 \).
Check:
\[
1 + 6 + 8 = 15, \quad
6 + 8 + 2 = 16, \quad
8 = 2 + 6 \; \text{(OK)}
\]
\underline{Case 2:} \( c = 9 \)
\[
a = c - 7 = 2, \quad
b = 22 - 2c = 22 - 18 = 4, \quad
d = c - 6 = 3
\]
Number: \( \overline{abcd} = 2493 \).
Check:
\[
2 + 4 + 9 = 15, \quad
4 + 9 + 3 = 16, \quad
9 = 3 + 6 \; \text{(OK)}
\]
Step 5: Find the required difference.
Largest possible number \( = 2493 \)
Smallest possible number \( = 1682 \)
\[
\text{Difference} = 2493 - 1682 = 811
\]
So, the required difference is \( 811 \).