\(f(x) = \begin{cases} x^2, & \quad 0≤x≤3\\ 3x, & \quad 3≤x≤10 \end{cases}\)
The relation g is defined by
\(g(x) = \begin{cases} x^2, & \quad 0≤x≤2\\ 3x, & \quad 2≤x≤10 \end{cases}\)
Show that f is a function and g is not a function.
The relation f is defined as \(f(x) = \begin{cases} x^2, & \quad 0≤x≤3\\ 3x, & \quad 3≤x≤10 \end{cases}\)
It is observed that for
0 ≤ x < 3, f(x) = x2
3 < x ≤10, f(x) = 3x
Also, at x = 3, f(x) = 32= 9 or f(x) = 3 × 3 = 9
i.e., at x = 3, f(x) = 9
Therefore, for 0 ≤ x ≤ 10, the images of f(x) are unique.
Thus, the given relation is a function.
The relation g is defined as \(g(x) = \begin{cases} x^2, & \quad 0≤x≤2\\ 3x, & \quad 2≤x≤10 \end{cases}\)
It can be observed that for x=2, g(x) = 22 = 4 and g(x) = 3 × 2 = 6
Hence, element 2 of the domain of the relation g corresponds to two different images i.e., 4 and 6.
Hence, this relation is not a function.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: