\( 9^\circ \)
Step 1: Use the prism formula
For a small-angled prism, the refractive index (\( n \)) is related to the angle of the prism (\( A \)) and the angle of minimum deviation (\( D_m \)) by the formula: \[ n = \frac{\sin \left(\frac{A + D_m}{2} \right)}{\sin \left(\frac{A}{2} \right)} \] Given: \[ n = 1.6, \quad D_m = 4.2^\circ \] For small angles (in degrees), we approximate: \[ \sin x \approx x \text{ (in radians)} \] Step 2: Solve for \( A \)
Rewriting the equation: \[ 1.6 = \frac{\left(\frac{A + 4.2}{2} \right)}{\left(\frac{A}{2} \right)} \] \[ 1.6 \times \frac{A}{2} = \frac{A + 4.2}{2} \] Multiplying by 2: \[ 1.6 A = A + 4.2 \] \[ 1.6A - A = 4.2 \] \[ 0.6A = 4.2 \] \[ A = \frac{4.2}{0.6} = 7^\circ \] Thus, the angle of the prism is \( 7^\circ \).
A current element X is connected across an AC source of emf \(V = V_0\ sin\ 2πνt\). It is found that the voltage leads the current in phase by \(\frac{π}{ 2}\) radian. If element X was replaced by element Y, the voltage lags behind the current in phase by \(\frac{π}{ 2}\) radian.
(I) Identify elements X and Y by drawing phasor diagrams.
(II) Obtain the condition of resonance when both elements X and Y are connected in series to the source and obtain expression for resonant frequency. What is the impedance value in this case?
Match the following: