\( 9^\circ \)
Step 1: Use the prism formula
For a small-angled prism, the refractive index (\( n \)) is related to the angle of the prism (\( A \)) and the angle of minimum deviation (\( D_m \)) by the formula: \[ n = \frac{\sin \left(\frac{A + D_m}{2} \right)}{\sin \left(\frac{A}{2} \right)} \] Given: \[ n = 1.6, \quad D_m = 4.2^\circ \] For small angles (in degrees), we approximate: \[ \sin x \approx x \text{ (in radians)} \] Step 2: Solve for \( A \)
Rewriting the equation: \[ 1.6 = \frac{\left(\frac{A + 4.2}{2} \right)}{\left(\frac{A}{2} \right)} \] \[ 1.6 \times \frac{A}{2} = \frac{A + 4.2}{2} \] Multiplying by 2: \[ 1.6 A = A + 4.2 \] \[ 1.6A - A = 4.2 \] \[ 0.6A = 4.2 \] \[ A = \frac{4.2}{0.6} = 7^\circ \] Thus, the angle of the prism is \( 7^\circ \).
A hemispherical vessel is completely filled with a liquid of refractive index \( \mu \). A small coin is kept at the lowest point \( O \) of the vessel as shown in the figure. The minimum value of the refractive index of the liquid so that a person can see the coin from point \( E \) (at the level of the vessel) is:
In a messenger RNA molecule, untranslated regions (UTRs) are present at:
I. 5' end before start codon
II. 3' end after stop codon
III. 3' end before stop codon
IV. 5' end after start codon