Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Knowing the initial position \( x_0 \) and initial momentum \( p_0 \) is enough to determine the position and momentum at any time \( t \) for a simple harmonic motion with a given angular frequency \( \omega \).
Reason (R): The amplitude and phase can be expressed in terms of \( x_0 \) and \( p_0 \).
In the light of the above statements, choose the correct answer from the options given below:
Which of the following graph shows the variation of velocity with mass for the constant momentum?
A body initially at rest undergoes rectilinear motion. The force-time (F-t) graph for the motion of the body is given below. Find the linear momentum gained by the body in 2 s.
A ball is projected in still air. With respect to the ball the streamlines appear as shown in the figure. If speed of air passing through the region 1 and 2 are \( v_1 \) and \( v_2 \), respectively and the respective pressures, \( P_1 \) and \( P_2 \), respectively, then
If the voltage across a bulb rated 220V – 60W drops by 1.5% of its rated value, the percentage drop in the rated value of the power is:
It can be defined as "mass in motion." All objects have mass; so if an object is moving, then it is called as momentum.
the momentum of an object is the product of mass of the object and the velocity of the object.
Momentum = mass • velocity
The above equation can be rewritten as
p = m • v
where m is the mass and v is the velocity.
Momentum is a vector quantity and the direction of the of the vector is the same as the direction that an object.