Using Bernoulli's principle: \[ P_1 + \frac{1}{2} \rho v_1^2 = P_2 + \frac{1}{2} \rho v_2^2 \]
Where:
- \(P_1 = 3.5 \times 10^5 \, {Nm}^{-2}\) (initial pressure),
- \(P_2 = 3.0 \times 10^5 \, {Nm}^{-2}\) (final pressure),
- \(\rho = 1000 \, {kg/m}^3\), - \(v_1 = 0 \, {m/s}\) (since the pipe is closed initially),
- \(v_2\) is the speed of water we need to find.
Rearranging the equation for \(v_2\): \[ v_2 = \sqrt{\frac{2(P_1 - P_2)}{\rho}} \] Substitute the known values: \[ v_2 = \sqrt{\frac{2(3.5 \times 10^5 - 3.0 \times 10^5)}{1000}} = \sqrt{\frac{10^5}{1000}} = \sqrt{100} = 10 \, {m/s} \] Thus, the speed of water flowing out of the pipe is \(10 \, {m/s}\).
Match List-I with List-II:
| List-I (Modulation Schemes) | List-II (Wave Expressions) |
|---|---|
| (A) Amplitude Modulation | (I) \( x(t) = A\cos(\omega_c t + k m(t)) \) |
| (B) Phase Modulation | (II) \( x(t) = A\cos(\omega_c t + k \int m(t)dt) \) |
| (C) Frequency Modulation | (III) \( x(t) = A + m(t)\cos(\omega_c t) \) |
| (D) DSB-SC Modulation | (IV) \( x(t) = m(t)\cos(\omega_c t) \) |
Choose the correct answer:

If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: