For the Lyman series, transitions are to the ground state ($n_1 = 1$).
Wavelength is given by the Rydberg formula: $\frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$, where $R$ is the Rydberg constant.
For $n_2 = 7$: $\frac{1}{\lambda_1} = R \left( 1 - \frac{1}{7^2} \right) = R \left( 1 - \frac{1}{49} \right) = R \cdot \frac{48}{49}$.
For $n_2 = 9$: $\frac{1}{\lambda_2} = R \left( 1 - \frac{1}{9^2} \right) = R \left( 1 - \frac{1}{81} \right) = R \cdot \frac{80}{81}$.
Since $\lambda \propto \frac{1}{\frac{1}{\lambda}}$, ratio $\lambda_1 : \lambda_2 = \frac{49}{48} : \frac{81}{80}$.
Convert to whole numbers: $\lambda_1 : \lambda_2 = \frac{49}{48} \times \frac{80}{81} : 1 \times \frac{80}{81} = \frac{49 \times 80}{48 \times 81} : \frac{80}{81} = \frac{49 \times 80}{48 \times 81} : 1$.
Calculate: $49 \times 80 = 3920$, $48 \times 81 = 3888$, so $\frac{3920}{3888} = \frac{245}{243}$.
Thus, $\lambda_1 : \lambda_2 = 245 : 243$.
Match List-I with List-II on the basis of two simple harmonic signals of the same frequency and various phase differences interacting with each other:
LIST-I (Lissajous Figure) | LIST-II (Phase Difference) | ||
---|---|---|---|
A. | Right handed elliptically polarized vibrations | I. | Phase difference = \( \frac{\pi}{4} \) |
B. | Left handed elliptically polarized vibrations | II. | Phase difference = \( \frac{3\pi}{4} \) |
C. | Circularly polarized vibrations | III. | No phase difference |
D. | Linearly polarized vibrations | IV. | Phase difference = \( \frac{\pi}{2} \) |
Choose the correct answer from the options given below: