Question:

The ratio of the wavelengths of the spectral lines in the Lyman series of the hydrogen spectrum when the transitions take place from 7th and 9th states to the ground state is:

Show Hint

For spectral lines, use the Rydberg formula $\frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$. Wavelengths are inversely proportional to $\frac{1}{\lambda}$.
Updated On: Jun 3, 2025
  • 245 : 243
  • 216 : 293
  • 251 : 236
  • 247 : 224
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

For the Lyman series, transitions are to the ground state ($n_1 = 1$). 
Wavelength is given by the Rydberg formula: $\frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$, where $R$ is the Rydberg constant. 
For $n_2 = 7$: $\frac{1}{\lambda_1} = R \left( 1 - \frac{1}{7^2} \right) = R \left( 1 - \frac{1}{49} \right) = R \cdot \frac{48}{49}$. 
For $n_2 = 9$: $\frac{1}{\lambda_2} = R \left( 1 - \frac{1}{9^2} \right) = R \left( 1 - \frac{1}{81} \right) = R \cdot \frac{80}{81}$. 
Since $\lambda \propto \frac{1}{\frac{1}{\lambda}}$, ratio $\lambda_1 : \lambda_2 = \frac{49}{48} : \frac{81}{80}$. 
Convert to whole numbers: $\lambda_1 : \lambda_2 = \frac{49}{48} \times \frac{80}{81} : 1 \times \frac{80}{81} = \frac{49 \times 80}{48 \times 81} : \frac{80}{81} = \frac{49 \times 80}{48 \times 81} : 1$. 
Calculate: $49 \times 80 = 3920$, $48 \times 81 = 3888$, so $\frac{3920}{3888} = \frac{245}{243}$. 
Thus, $\lambda_1 : \lambda_2 = 245 : 243$. 
 

Was this answer helpful?
0
0

AP EAPCET Notification