The shortest wavelength of a spectral series occurs when the transition is from \(n = \infty\) to the lower energy level (\(n_1\)). For the Balmer series, \(n_1 = 2\), and for the Paschen series, \(n_1 = 3\). Using the Rydberg formula:
\[
\frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right),
\]
where \(R_H\) is the Rydberg constant.
### Step 1: Wavelength for the Balmer series (\(n_1 = 2\))
For the Balmer series (\(n_1 = 2, n_2 = \infty\)):
\[
\frac{1}{\lambda_{\text{Balmer}}} = R_H \left( \frac{1}{2^2} - \frac{1}{\infty^2} \right) = R_H \cdot \frac{1}{4}.
\]
Thus:
\[
\lambda_{\text{Balmer}} = \frac{1}{\frac{R_H}{4}} = \frac{4}{R_H}.
\]
### Step 2: Wavelength for the Paschen series (\(n_1 = 3\))
For the Paschen series (\(n_1 = 3, n_2 = \infty\)):
\[
\frac{1}{\lambda_{\text{Paschen}}} = R_H \left( \frac{1}{3^2} - \frac{1}{\infty^2} \right) = R_H \cdot \frac{1}{9}.
\]
Thus:
\[
\lambda_{\text{Paschen}} = \frac{1}{\frac{R_H}{9}} = \frac{9}{R_H}.
\]
### Step 3: Ratio of Wavelengths
The ratio of the shortest wavelengths is:
\[
\frac{\lambda_{\text{Balmer}}}{\lambda_{\text{Paschen}}} = \frac{\frac{4}{R_H}}{\frac{9}{R_H}} = \frac{4}{9}.
\]
### Final Answer:
The ratio of the shortest wavelengths is:
\[
\boxed{\frac{4}{9}}.
\]