Step 1: Moment of inertia of a disc about a tangent in its plane.
Using the parallel axis theorem, moment of inertia \(I = I_\text{CM} + MR^2\)
\[
I_\text{tangent} = \frac{1}{4}MR^2 + MR^2 = \frac{5}{4}MR^2
\]
Step 2: Radius of gyration \(k\) is defined by:
\[
I = Mk^2 \Rightarrow k = \sqrt{\frac{5}{4}}R = \frac{\sqrt{5}}{2}R
\]
Step 3: Ratio of radius to radius of gyration:
\[
\frac{R}{k} = \frac{R}{\frac{\sqrt{5}}{2}R} = \frac{2}{\sqrt{5}}
\]
So, the required ratio is \( \boxed{2 : \sqrt{5}} \)