Step 1: Write the general term of the binomial expansion:
\[
T_{r+1}=\binom{15}{r}(x^2)^{15-r}\left(\frac{2}{x}\right)^r
\]
Step 2: Simplify the general term:
\[
T_{r+1}=\binom{15}{r}2^r x^{30-3r}
\]
Step 3: Find the term containing $x^{15}$.
\[
30-3r=15 \Rightarrow r=5
\]
Coefficient of $x^{15}$:
\[
\binom{15}{5}2^5
\]
Step 4: Find the term independent of $x$.
\[
30-3r=0 \Rightarrow r=10
\]
Constant term:
\[
\binom{15}{10}2^{10}
\]
Step 5: Find the required ratio:
\[
\frac{\binom{15}{5}2^5}{\binom{15}{10}2^{10}}
\]
Using $\binom{15}{5}=\binom{15}{10}$:
\[
=\frac{2^5}{2^{10}}=\frac{1}{2^5}=\frac{1}{32}
\]
Step 6: Writing the ratio in the given form:
\[
\boxed{7:64}
\]